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Introduction. In recent work, having mainly to do with continuous classical/
quantum random walks on graphs and the quantum theory of open systems, I
have repeatedly had need to draw upon several aspects of elementary matrix
theory that, while doubtless “well known” in some quarters, seem not to be
treated in any of the standard texts. Discussions of the points in question
are at present folded—often redundantly—into the texts of a large number
of Mathematica notebooks, and have proven difficult to retrieve because the
notebooks bear names that refer to diverse areas of application, not to incidental
points of mathematical method. My primary objective here will be to construct
a unified account of that material, to be released from the inefficient distraction
of having to “reinvent” such material each time I encounter need of this or that
idea or detail.

I have come to belated realization that the ideas in question—though
developed independently of one another, to serve a variety of special needs—are
in fact interrelated in a variety of interesting ways; I will seek to expose some
of those interconnections.

The matrices of interest will in all cases be finite dimensional. Occasionally
the reality of the matrix elements will (at least for application-based interpretive
purposes) be essential, but more commonly we will assume the elements of M
to be complex in the general case, real as a special case.

Our typical objective, broadly speaking, will be to show how matrices
of some frequently-encounterred specified type can be constructed (additively,
multiplicatively, by exponentiation. . . ) from matrices of some more specialized
type.

Standard spectral decomposition. Let A be a d × d hermitian matrix: A = A+

where in the finite-dimensional theory + signifies nothing more abstract than
simple conjugated transposition. We avail ourselves of Dirac notation, which
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in this simple context has the status merely of a handy triviality: let Vd signify
the complex space of column vectors

|y) =





y1

y2
...

yd





Application of + to |x) produces

(x| ≡ [|x)]+ = ( x∗
1, x∗

2, . . . , x∗
d )

—a row vector that lives in the dual space V!
d. The inner product

(x|y) = x∗
1y1 + x∗

2y2 + · · · + x∗
dyd

is a complex number-valued object that lives with one foot in Vd and the other
foot in V!

d. Clearly, (x|x) is real, non-negative, and vanishes iff |x) = |0).
Look to complex numbers of the construction (x|M |y). Clearly,

[(x|M |y)]+ = (y|M+|x) = complex conjugate of (x|M |y)

so from the hermiticity assumption A = A+ we obtain

(y|A|x) = complex conjugate of (x|A |y)

which implies the reality of (x|A|x). Supposing a to be an eigenvalue of A and
|a) the associated eigenvector

A|a) = a|a)

we have

a = (a|A|a)
(a|a)

=⇒ eigenvalues of hermitian matrices are real

Suppose, moreover, that A|a1) = a1|a1) and A|a2) = a2|a2) with a1 $= a2. Then

(a2|A|a1) = a1(a2|a1)
(a1|A|a2) = a2(a1|a2) =⇒ (a2|A|a1) = a∗

1(a2|a1)

which by a∗
1 = a1 $= a2 implies

(a2|a1) = 0 :

{ eigenvectors associated with distinct
eigenvalues of a hermitian matrix A
are orthogonal
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Suppose for the moment that the spectrum {a1, a2, . . . , ad} of A is non-
degenerate. The associated eigenvectors {|a1), |a2), . . . , |ad)}, which we may
assume to have been normalized, comprise then an orthonormal basis in Vd.
The general element |x) ∈ Vd can be developed

|x) = ξ1|a1) + ξ2|a2) + · · · ξd|ad)

The matrices
Pk = |ak)(ak|

—which are clearly projective and orthogonal

PjPk = δjkPk

serve to project out the respective components of vectors |x)

Pk|x) = ξk|ak)

and are complete in the sense that for all |x) ∈ Vd

d∑

k=1

Pk|x) = |x) ; i.e.,
d∑

k=1

Pk = I

We arrive thus at the spectral decomposition

A =
d∑

k=1

akPk =
d∑

k=1

|ak)ak(ak|

of the hermitian matrix A.1 More generally,

An =
d∑

k=1

an
k Pk =

d∑

k=1

|ak)an
k (ak|

and, for all f(•) that can be developed as formal power series,

f(A) =
d∑

k=1

f(ak)Pk =
d∑

k=1

|ak)f(ak)(ak|

1 Degenerate spectra are described {(a1, µ1), (a2, µ2), . . . , (aν , µν)}, where
the ak are distinct, µk is the degeneracy of ak and

∑
k µk = d. In such cases

we have

A =
ν∑

k=1

akPk

where P2
k = Pk projects onto a µk-dimensional subspace of Vd : trPk = µk.

Those subspaces are mutually orthogonal. One can proceed arbitrarily to erect
orthonormal bases on each of those subspaces; i.e., to construcrt subresolutions
Pk =

∑µk

j=1 Pjk. The short of it: the issues posed by spectral degeneracy are,
for present purposes, uninteresting, and will henceforth be ignored.
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In particular, we have this spectral decomposition of the unitary matrix
“generated” by the antihermitian matrix iA:

U ≡ eiA =
d∑

k=1

|ak)eiak (ak|

I have belabored this familiar material in order to facilitate discussion of
some closely related material which, because only rarely called upon in physical
applications, is much less familiar.

Generalized spectral decomposition. Abandoning now our former hermiticity
assumption, we assume M to be an arbitrary d×d complex matrix. We confront
now a pair of “eigenproblems” which, because the eigenvalues of M+ are (by an
easy argument) complex conjugates of the eigenvalues of M, can be formulated

M |rk) = mk|rk)
M+ |#k) = m∗

k|#k) ⇐⇒ (#k|M = (#k|mk

So we have, in general, to distinguish between right eigenvectors {|rk)} and left
eigenvectors {(#k|}. Though we are generally in position to say nothing about
inner products of the forms (rj |rk) or (#j |#k), it follows from

(#j |M |rk) = mj(#j |rk) = mk(#j |rk)

that
(#j |rk) = 0 if mj $= mk

In the absence of spectral degeneracy

(#j | is ⊥ every |rk) except its “mate” |rj), and vice versa

The bases {|rk)} and {(#k|} are, in this sense, “biorthogonal.”2

2 This is a concept encountered in solid state physics and crystalography. Let
{a , b , c} be an arbitrary set of linearly independent unit vectors in 3-space, and
define

A ≡ b × c , B ≡ c × a , C ≡ a × b

Then
A ⊥ b & c

B ⊥ c & a

C ⊥ a & b

The elements {A , B , C}normalized of the “reciprocal basis” are used to construct
the “reciprocal lattice.” For related material, see P. M. Morse & H. Feshbach,
Methods of Theoretical Physics (1953), pages 884 & 931.
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Introduce matrices
Pk = |rk)(#k|

(#k|rk)
and notice that the definition gives back Pk = |rk)(rk| when the hermiticity
assumption M+ = M is reinstated. Those matrices are projective

P2
k = |rk)(#k|rk)(#k|

(#k|rk)2
= Pk

and (by biorthogonality) orthogonal:

PjPk =
|rj)(#j |rk)(#k|
(#j |rj)(#k|rk)

= O : j $= k

To establish that they are also complete we note that if the orthonormal frames
{|rj)} and {|#k)} were arbitrary the r -coordinates (rj |x) and the #-coordinates
(#k|x) of an arbitrary vector |x) would stand in a relationship that reduces to
simple proportionality in the presence of biorthogonality:

(#j |x) =
∑

k

(#j |rk)(rk|x)

↓
= (#j |rj)(rj |x) by biorthogonality

of which, by the way, (rj |#j) = (#j |rj) –1 is a corollary. We therefore have
{ ∑

j

Pj

}
|x) =

∑

j

|rj)
(#j |x)
(#j |rj)

=
∑

j

|rj)(rj |x) = |x) : all |x)

⇓
∑

j

Pj = I

Similarly,
M =

∑

j

mj |rj)(rj | =
∑

j

∑

k

mj |rj)(rj |#k)(#k|

=
∑

j

mj |rj)(rj |#j)(#j |

=
∑

j

mj |rj)(#j |rj) –1(#j |

⇓

M =
∑

j

mjPj

From this “generalized spectral decomposition” we recover the “standard”
spectral decomposition when, as a special circumstance, M is hermitian.
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We are in position now to write

f(M) =
∑

j

f(mj)Pj

and, in particular, to speak of the “logarithm” of any non-singular matrix M :

M = eL with L =
∑

j

log(mj)Pj

Application to proof of an elegant identity . Suppose

A = eB

The (nameless!) elegant identity in question—which I first encountered in a
paper by Schwinger, and of which I have made essential use many times in the
course of my career, in a great variety of contexts—asserts that

det A = etrB

A simple proof is available when the square matrix A is non-singular and can
be diagonalized by similarity transformation, for

A = S –1





a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an



S =⇒ B = S –1





log a1 0 . . . 0
0 log a2 . . . 0
...

...
. . .

...
0 0 . . . log an



S

and we have

det A =
∏

k

ak

etrB = exp
{ ∑

k

log ak

}
= exp

{
log

[ ∏

k

ak

]}
= det A

Non-singularity was assumed to avoid reference to “log 0.” Matrices encountered
in physical contexts often conform to the conditions assumed in that argument.3

3 Think of rotation matrices, which by RTR = I are proper/improper
according as det R = ±1. Matrices of the form R = eA are rotational if and
only if A is antisymmetric, therefore traceless. But trA = 0 ⇒ det R = 1, from
which we conclude that rotation matrices do not possess (real) antisymmetric
“generators.” Similarly, the unitarity of U implies det(U+U) = |det U|2 = 1.
But U = eG is unitary if and only if G is antihermitian, and the diagonal
elements of antihermitian matrices are necessarily imaginary. So we have the
sharpened statement det U = eiφ with iφ = trG. Similar remarks arise when
Lorentz matrices—defined LTGL = G or equivalently L–1 = G –1LTG, where G
is the Lorentz metric—are written in “polar form” L = eA.
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But not every square matrix M—moreparticularly, not everyM encountered
in the course of physical argument—admits of diagonalization by similarity
transformation.4 We are, however, in position now to observe that

det M =
d∏

k=1

mk =
ν∏

j=1

(mj)µj

and to construct

L = log M =
ν∑

j=1

log(mj)Pj

But as previously remarked, trPj = µj , so

trL =
ν∑

j=1

µj log(mj)

⇓

exp(trL) =
ν∏

j=1

(mj)µj

and our “elegant identity” is established now—with remarkable simplicity—in
its full generality.

By way of application, look to the improper rotation matrix

R =
(

1 0
0 −1

)
· exp

{ (
0 φ
−φ 0

) }
=

(
cos φ sin φ
sin φ − cos φ

)

We have argued3 that R—since improper—cannot be developed R = eA with
A real and antisymmetric. But R is non-singular (its eigenvalues are ω1 = −1
and ω2 = +1) so must admit of generalized spectral decomposition. By quick
computation we obtain

R = ω1P1 + ω2P2

with
P1 =

(
sin2 1

2φ − cos 1
2φ sin 1

2φ
− cos 1

2φ sin 1
2φ cos2 1

2φ

)

P2 =
(

cos2 1
2φ + cos 1

2φ sin 1
2φ

+ cos 1
2φ sin 1

2φ sin2 1
2φ

)

4 It is, in the present context, of no help to recall that every matrix—
whether square or rectangular !—can by singular value decomposition (SVD)
be displayed

M = S –1D T with D diagonal

since in the general case S $= T, which subverts the logic of the simple proof.
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whence
log R = log(ω1)P1 + log(ω2)P2 = iπP1

With Mathematica’s assistance we verify that indeed

(
cos φ sin φ
sin φ − cos φ

)
= exp

{
iπ

(
sin2 1

2φ − cos 1
2φ sin 1

2φ
− cos 1

2φ sin 1
2φ cos2 1

2φ

) }

The generator is now not real antisymmetric but imaginary symmetric, so the
real rotation matrix R is actually unitary . Finally, we have

det R = eiπ trP1 = eiπ = −1

Continuously interpolated classical/quantum Markov processes. Sequences

{f0, f1, f2, . . . , fn, . . .}

—and, more particularly, sequences generated by iterative processes

x → f(x) → f(f(x)) → · · · → f(f(· · · f(x) · · ·)) → · · ·

—of inexhaustible variety are encountered in pure/applied mathematics. In
a large subclass of those cases it is meaningful to ask “What meaning can
be assigned to the objects that occupy the interstices?” Think, for example,
of the meaning assigned by the gamma function to the symbol x! when x is
non-integral, or of the meaning assigned by the beta function to

(x
y

)
when x

and y are non-integral, or of the meanings assigned by the fractional calculus
to derivatives and integrals of non-integral order. I will be concerned here with
certain linear algebraic iterative processes

x → F x → F2 x → · · · → Fn x → · · ·

and with the question “What meaning can be assigned to Fn x when n is
non-integral?” The short answer: we are in position now to construct

F = elog F

and therefore to write

Fν = eν log F : ν real or complex

But the details relating to a specific application—classical/quantum random
walks on graphs—are what interest me, and it is to those which I will restrict
my remarks.

A “token” strolls randomly on a graph with N nodes (or “vertices”). The
jth element of the “stochastic vector”
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pn =





p1

p2
...
pj

...
pN





n

states the probability that, after n steps, the token finds itself standing on node
#j. “Markov processes” arise when the token is “memoryless”; i.e., when the
token’s next step is determined probabilistically by is present location, without
reference to past locations

pn+1 = M pn

and when
M = ‖Mij‖ with Mij = probabilityi←j

remains constant throughout the process. A token standing on a given node
must, after one step, find itself standing on one or another of the nodes, from
which we conclude that each of the columns of M sums to unity (is, in others
words, a stochastic vector):

∑
i Mij = 1 (all j). The phrase “detailed balance”

refers to situations in which

probabilityi←j = probabilityj←i : all i, j

In such cases the “Markov matrix” M is symmetric: M T = M.

Looking to general properties of the spectra of Markov matrices. . . the row
vector (1, 1, . . . , 1) is a left eigenvector of every M, with left eigenvalue λ = 1.
But left eigenvalues are right eigenvalues, so the spectra of Markov matrices
invariably contain +1 as an element. It is entirely possible for one or more
columns of such a matrix to be identical; in such cases det M = 0, so we must
distinguish between singular and non-singular Markov matrices: 0 appears one
or more times in the spectra of singular Markov matrices. The eigenvalues of
symmetric Markov matrices are invariably real, but in the absence of symmetry
(i.e., of detailed balance) they are typically complex (and because M is real they
occur in conjugate pairs). Numerical experimentation suggests, and it is not
difficult to prove,5 that in all cases

|λ| ≤ 1

I will call λ1 = 1 the “leading eigenvector. For symmetric Markov matrices the
spectrum can be displayed

λ1 = 1 > λ2 ≥ λ3 ≥ · · · ≥ λN ≥ −1

while in the absence of symmetry it is more natural to write

λ1 = 1 ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λN | ≥ 0

Of special interest in some respects are cases in which λN = −1. Look, for

5 See, for example, /www.numbertheory.org/courses/MP274/markov.pdf.
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example, to the Markov matrix

M square =





0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0





which refers to unbiased balanced random walks on the perimeter of a square,
and has eigenvalues {λ1 = 1, λ2 = λ3 = 0, λ4 = −1}. This (non-invertible!)
matrix has the curious property that

Mn
square =










0 • 0 •
• 0 • 0
0 • 0 •
• 0 • 0



 n even





• 0 • 0
0 • 0 •
• 0 • 0
0 • 0 •



 n odd

where • = 1
2 . I interpolate here the observation that (pretty obviously)

Products of Markov matrices are Markovian

The matrix M = M1M2 · · ·Mp describes aMarkovprocess in which the next-step
instructions are adjusted repetitively/cyclically.

So much by way of preparation.

Standard/generalized spectral decomposition supples

M = P1 + λ2P2 + λ3P3 + · · ·λNPN

which in non-singular cases can be used to construct

B ≡ log M = log(λ2)P2 + log(λ3)P3 + · · · + log(λN)PN

and thus to assign meaning
Mν = eν B

to the real integral/fractional powers of M (and even to complex powers, in
which, however, I have no present interest). All of which is evidently known to
Mathematica: when I construct the logarithm B of a random Markov matrix M
I find that in all cases the commands MatrixPower[M, ν ] and MatrixExp[ν B]
give identical results.

Typically—in the absence of the restrictive assumptions that I will soon
have occasion to install—some eigenvalues are complex, others are real but
negative, and in all such cases log λ is complex. Moreover, the right/left
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eigenvectors |r) and (!|—whence also the projector P—associated with complex
eigenvalues are complex. For those reasons we expect B, in the absence of
restrictive assumptions, to be complex, and the same to be true of Mν = eν B.
Numerical experimentation provides compelling evidence, however, that when
ν is a positive integer all complexity magically disappears:

Mν = eν B is real Markovian when ν = 1, 2, 3, . . .

But when ν is fractional Mν is complex; its elements are no longer interpretable
as transition probabilities, yet Mν remains “formally Markovian” in the sense
that its columns remain “formally stochastic” (sum to 1 + 0i).6 Application of
Mν to a stochastic vector p yields a formally stochastic complex vector pν .

Numerical experimentation indicates that in all cases the columns of B
sum to zero, which is what one would expect on the grounds that when ν is
infinitesimal

Mν ≈ I + ν B

Since the columns of I sum to unity and Mν is formally Markovian, the columns
of B must sum to 0 + 0i.

To obtain “continuous Markov processes” we must arrange to avoid the
intrusion of complex numbers: in short, we must look to the subclass of Markov
matrices that have real non-negative eigenvalues. To achieve spectral reality we
have only to assume detailed balancing; i.e., to insist that the real matrix M be
symmetric. Spectral positivity is, however, a bit more difficult to guarantee. It
is simplest to attach our restrictive assumptions not to M but to its
necessarily symmetric logarithm B. If the automatically real eigenvalues of B
are denoted {β1, β2, . . . , βN} = {log λ1, log λ2, . . . , log λN} then the eigenvalues
of the automatically symmetric matrix M become automatically positive:

{λ1, λ2, . . . , λN} = {eβ1 , eβ2 , . . . , eβN }

To insure that M = eB be Markovian we impose upon B the requirement that
all rows/columns sum to zero. To construct such matrices we write

A =





0 a12 a13 a14 . . . a1N

0 0 a23 a24 . . . a2N

0 0 0 a34 . . . a3N

...
...

...
...

. . .
...

0 0 0 0 . . . 0




+ transpose

6 Something quite similar can be said when ν = −1,−2,−3, . . .; the elements
of Mν then tend to fall outside the allowed interval [0, 1], but the elements of
each column continue to sum to unity. The same can be said in particular of M –1:
Markov processes are non-invertible (better: their inverses are non-Markovian).
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D =





d1 0 0 0 . . . 0
0 d2 0 0 . . . 0
0 0 d3 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . dN




with dj =

N∑

k=1

Ajk

and from those matrices assemble

B = A − D

Numerical experimentation establishes7 that all such matrices are singular,
and possess spectra of the form {β1 = 0 ≥ β2 ≥ β3 ≥ · · · ≥ βN}. We establish
similarly that M = eB is invariably Markovian, and that so more generally are
all fractional powers of M.

Feeding λ1 = e0 = 1 and 0 < λk = eβk < 1 (k = 2, 3, . . . , N) into the
spectral decomposition of M we find that

lim
ν→∞

Mν = P1

where P1 projects onto the leading eigenvector |r1) of M. By experimental
evidence

|r1) ∼





1
1
...
1



 and P1 = 1
N





1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1





which establishes the sense in which such Markov processes equilibrate: taking
p0 to be an arbitrary initial stochastic vector, we have8

p0 −→ p∞ = 1
N





1
1
...
1





7 Here as always—so limited are my present objectives—I omit any attempt
to construct analytical demonstrations of claims the validity of which I am
convinced on the basis of randomized numerical calculation.

8 Markov matrices which, like the M square considered previously, include
−1 among their eigenvalues cannot be rendered continuous. They give rise
asymptotically to states that “blink” alternately between





•
0
•
0
...
•
0





and





0
•
0
...
•
0
•





with • = 1
N/2

and give back the preceding p∞ when averaged .
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In the theory of continuous-time quantum walks on finite-dimensional state
spaces (graphs)9 the role of Mν is taken over by unitary matrices of the special
design

U(t) = e−i tB

where B retains the classical structure described above, but is thought of in this
context as a real symmetric (therefore hermitian) “Hamiltonian.” It serves the
purposes most typical of workers in this field to assume that A = B+D has not
the general structure described earlier, but is simply the “adjacency matrix” of
the graph, which is the standard graph-theoretic device used to indicate which
nodes (or “vertices”) are linked together by “edges.” Look, for example, to the
adjacency matrix of a typical 5-node graph:

A =





0 0 1 1 0
0 0 0 1 0
1 0 0 0 0
1 1 0 0 1
0 0 0 1 0





which gives

B =





−2 0 1 1 0
0 −1 0 1 0
1 0 −1 0 0
1 1 0 −3 1
0 0 0 1 −1





By (standard) spectral decomposition we have

B = ω1P1 + ω2P2 + ω3P3 + ω4P4 + ω5P5

where invariably ω1 = 0 and P1 projects onto the ray defined by

|1) = 1√
5





1
1
1
1
1





Therefore U(t) is given in this instance by

U(t) = P1 + e−iω2t P2 + e−iω3t P3 + e−iω4t P4 + e−iω5t P5

The complex matrix U(t) is “formally Markovian” in the sense that each of its
rows/columns sum to complex unity. Unlike its classical counterpart, U(t) does

9 See A. M Childs, E. Farhi & S. Gutmann, “Example of the difference
between quantum and classical random walks,” arXiv:quant-ph/0103020v1
(6 March 2001); D. Aharonov, A. Ambainis, J. Kempe & U. Vazirani, “Quantum
walks on graphs,” arXiv:quant-ph/0012090 (25 May 2002).
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not equilibrate asymptotically, but instead forever buzzes (anharmonically
unless the eigenvalues {ω2, ω3, . . . , ωN} are rational multiples of one another)
about its steady component P1. A quantum allusion to the classical asymptote
does, however, emerge in this time-averaged sense:

lim
T→∞

1
T

∫ ∞

0
U(t)dt = P1

Hilbert-Schmidt orthogonalization. The space of n × n complex matrices, since
closed under complex linear combination, is an n2-dimensional vector space Vn2

which upon introduction of the Hilbert-Schmidt inner product10

(X, Y) ≡ 1
n tr(X+ Y)

becomes an inner product space.

Let {X1, X2, . . . , Xn2} be an arbitrary set of linearly independent elements
of Vn2 , in short: a basis in Vn2 . One then has

(X i, Xj) = gij , elements of a hermitian “metric matrix” G

I describe a direct analog of the Gram-Schmidt orthogonalization process11 that
proceeds from the given basis {X1, X2, . . . , Xn2} to a basis {E1, E2, . . . , En2} the
elements of which are Hilbert-Schmidt (or, as it has become my habit to say,
“trace-wise”) orthonormal:

(E i, Ej) = δij

By way of preparation, we observe that for all Z and all non-zero A one
has the identity

Z =
{

Z − (Z , A)
(A, A)

A
}

+
{

(Z , A)
(A, A)

A
}

≡ Z⊥ + Z‖

where Z⊥ is orthogonal to A
(Z⊥, A) = 0

10 In the following definition the prefactor 1
n has been introduced to achieve

(I , I) = 1

One might, more generally, define

(X, Y)G ≡ 1
g tr(X+G Y)

where G is an arbitrary non-singular n × n hermitian matrix and g = tr G.
11 For a very clear account of this process—which can be traced back to

Laplace and Cauchy—see http://en.wikipedia.org/wiki/Gram-Schmidt–process.
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and

Z‖ ≡ (Z , A)
(A, A)

A ≡ projA(Z)

is the A-component of Z, “parallel” to A. Finally, let us agree on occasion to
write

‖A‖ ≡
√

(A, A)

The orthogonalization procedure proceeds stepwise, and at each step one
first orthogonalizes, then normalizes:

X1 → Y1 = X1

↓
E1 = Y1/‖Y1‖

X2 → Y2 = X2 − projX1
(X2)

↓
E2 = Y2/‖Y2‖

X3 → Y3 = X3 − projX1
(X3) − projX2

(X3)
↓

E3 = Y3/‖Y3‖
...

Xk → Yk = Xk −
k−1∑

j=1

projXj
(Xk)

↓
Ek = Yk/‖Yk‖ : k = 1, 2, . . . , n2

The classic orthogonalization/orthonormalization procedure described
above is recursive, but leads to a result that is easily expressed in non-recursive
form. Immediately

Y2 =

∣∣∣∣
(X1, X1) (X2, X1)

X1 X2

∣∣∣∣
(X1, X1)

and by extension
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Yk =

∣∣∣∣∣∣∣∣∣∣

(X1, X1) (X2, X1) . . . (Xk, X1)
(X1, X2) (X2, X2) . . . (Xk, X2)

...
...

. . .
...

(X1, Xk−1) (X2, Xk−1) . . . (Xk, Xk−1)
X1 X2 . . . Xk

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

(X1, X1) (X2, X1) . . . (Xk, X1)
(X1, X2) (X2, X2) . . . (Xk, X2)

...
...

. . .
...

(X1, Xk−1) (X2, Xk−1) . . . (Xk, Xk−1)
(X1, Xk) (X2, Xk) . . . (Xk, Xk)

∣∣∣∣∣∣∣∣∣∣

Let the denominator be denoted Dk. Then11 the normalized matrices Ek acquire
the non-recursive descriptions

Ek =
same numerator√

Dk−1Dk

where it is to be understood that D0 = 1.

It is claimed11 that the Gram-Schmidt orthogonalization procedure—and
presumably also the Hilbert-Schmidt procedure—is numerically unstable, in
the sense that orthogonality falls an easy victim to round-off errors. Refined
iterative procedures have been devised to circumvent that problem. But my own
numerical experimentation, in which I used randomly constructed X matrices
of modest dimension, exposed no such problem.

Often it proves convenient to set X1 = I ; then E1 = I and the remaining
E-matrices are (by orthogonality) rendered traceless.

From the definition of the Hilbert-Schmidt inner product it follows readily
that

(A, B) =
{

(B, A)∗ : A and B arbitrary
(B, A) : A and B hermitian

so if the matrices {X1, X2, . . . , Xn2} are hermitian then only real coefficients
enter into the linear processes that send {X1, X2, . . . , Xn2} → {E1, E2, . . . , En2}.
Real linear combinations of hermitian matrices are hermitian, so we are led to
the important conclusion that the Hilbert-Schmidt process preserves hermiticity .

Let {H1, H2, . . . , Hn2} be a hermitian orthonormal basis in Vn2 and let X
be an arbitrary element. One then has

X =
n2∑

k=1

xk Hk with xk = (Hk, X) = 1
n tr(HkX)

Suppose more particularly that A and B are hermitian. Then

AB =
n2∑

k=1

ck Hk with ck = (Hk, AB)
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but products of hermitian matrices are typically not hermitian, which is to say:
the coefficients ck will typically not be real. Exceptions arise when (i) A and
B commute12 or (ii) when AB can be developed

AB = real linear combination of hermitian matrices

We observe in this connection that we can (since {E1, E2, . . . , En2} is an
orthonormal basis in Vn2) always write

E jEk =
∑

i

cj
i
kE i with cj

i
k = (E i, E jEk)

whereupon the E-matrices become elements of an algebra. As we have seen,
only exceptionally in cases where the E-matrices are hermitian can we expect
their products to be also hermitian (all cj

i
k to be real). Look, for example, to

the Pauli matrices

σ0 = I =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

which are seen to be hermitian and trace-wise orthonormal

(σi, σj) ≡ 1
2 tr

(
σiσj

)
= δij

and therefore to provide an orthonormal hermitian basis in V4.The set of Pauli
matrices is algebraically closed

σ2
1 = σ2

2 = σ2
3 = I

σ1σ2 = iσ3 = −σ2σ1

σ2σ3 = iσ1 = −σ3σ2

σ3σ1 = iσ2 = −σ1σ3

but six of the sixteen possible products are seen to be anti -hermitian.

The seemingly weird placement of indices on the “structure constants”
cj

i
k was intended to serve a purpose, which I digress now to explain. As an

expression of the associativity of matrix multiplication

E i(E jEk) = (E iE j)Ek

12 The argument proceeds this way: we have

ck = (Hk, AB) = (AB, Hk)∗ in general
= (Hk, AB)∗ if Hk and AB are both hermitian
= c∗k

But if A and B are hermitian then AB is hermitian iff A and B commute.
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we have
ci

q
p cj

p
k = ci

p
j cp

q
k

with
∑

p understood. If we introduce matrices

Ci ≡ ‖c i
q
p‖

the preceding equation can be formulated

Ci Cj =
∑

p c i
p
j Cp : compare Ei Ej =

∑
p c i

p
j Ep

from which it becomes clear that the C -matrices provide an n2 × n2 matrix
representation of the E-algebra.

The Hilbert-Schmidt inner product is a standard mathematical device, and
trace-wise orthonormality is a notion that I have encountered in a variety of
contexts over the years (though in the past it has always arisen as a discovered
property of matrices that recommended themselves to my attention for other
reasons, not a property that I set out intentionally to construct). My interest in
the construction of trace-wise orthonormal hermitian bases was sparked by the
discovery that such things enter critically into the derivation and final statement
of the Lindblad equation.13

Trace-wise orthonormal unitary bases. Hermiticity is defined by an additive
condition H+− H = O : (real) linear combinations of hermitian matrices are
hermitian, and we are therefore not surprised by the discovery that Hilbert-
Schmidt orthogonalization—an additive procedure—serves to construct trace-
wise orthonormal hermitian bases {H1, H2, . . . , Hn2} in Vn2 . Unitarity, on the
other hand, is defined by a multiplicative condition U+U = I : linear
combinations of unitary matrices are, in general, not unitary. It is, therefore,
somewhat surprising that it is nevertheless possible to construct complete sets of
trace-wise orthonormal unitary matrices {U1, U2, . . . , Un2} in terms of which
every matrix X ∈ Vn2—and, more particularly, every unitary matrix in Vn2

—can be developed

X = xk Uk :
∑

k understood

where (Uj , Uk) = δjk entails xk = (Uk, X).

It is clear that the construction principle must in this instance be not
additive but multiplicative. One might contemplate starting from a (randomly?)
prescribed set {W1, W2, . . . , Wn2} of multiplicatively independent14 unitary
matrices and proceeding to “orthogonalize” them, but I have discovered—
neither in the literature nor in the limited reach of my own imagination—
no unitarity-preserving way to accomplish that objective. I am brought to the

13 See Heinz-Peter Breuer & Francesco Petruccione, The Theory of Open
Quantum Systems (2006), page 74 and §3.2.2, pages 115-120.

14 . . . in the sense that none can be assembled multiplicatively from the others.
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conclusion that orthogonality cannot be achieved “after the fact,” but must
be built in from the outset. And so it is in the schemes devised by Schwinger
(1960) and by Werner (2000), of which I have written out detailed accounts
in “Relationships among the unitary bases of Weyl, Schwinger, Werner and
Oppenheim” (March 2012). Those schemes—which are, however different their
superficial appearance, fundamentally identical—both proceed along lines first
laid down by Weyl (1930), and both achieve their success by what (at least on
first encounter) appears to be magical indirection. My objective here will be to
try to remove some of the magic.

I begin with some trivial observations:

• All unitary matrices are automatically normalized:

(U, U) = 1
n tr(U+ U) = 1

n tr(I) = 1

• I is unitary, and matrices orthogonal to I are invariably traceless:

(I, U) = 0 = 1
n tr(U)

Let the elements of the unitary basis be tentatively denoted

{U} ≡ {U0, U1, U2, . . . , Un2−1}

where we have opted to include I as an element of the basis, writing U0 = I .
Let us agree, moreover, to write

Uk
+ = U−k

In that notation
(Ui, Uj) = 1

n tr(U−iUj)

Notice now that if the set {U} were multiplicatively closed in—tentatively—the
weak sense that

U−iUj = χ(i, j) · Uk(i,j) : χ(i, i) = 1 and k(i, j)
{

= 0 : i = j
+= 0 : otherwise

then orthonormality would be automatic:

(Ui, Uj) = 1
nχ(i, j) tr(Uk(i,j)) =

{ 1 : i = j
0 : otherwise

The “multiplicative closure” notion must, however, be subjected to some
refinement if it is to be rendered consistent with certain basic facts. First off,
the forced unitarity of the expression on the right side of U−iUj = χ(i, j)·Uk(i,j)

requires that in all cases the complex multiplier χ must have unit modulus:

χ(i, j) = eiϕ(i,j)

From (U−iUj)
+ = U−jUi it follows moreover that

e−iϕ(i,j) U−k(i,j) = eiϕ(j,i) Uk(j,i)
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and therefore that both ϕ(i, j) and k(i, j) must be antisymmetric functions of
their arguments

ϕ(i, j) = −ϕ(j, i) and k(i, j) = −k(j, i)

from which previous stipulations χ(i, i) = eiϕ(i,i) = e0 = 1 and k(i, i) = 0 now
follow as consequences.

The simplest and most obvious way to comply with those conditions is to
set ϕ(i, j) = 0 (all i, j) and k(i, j) = j − i, which is in effect to require of the
elements of {U} that

UiUj = Ui+j

And the simplest way to realize that condition is to assume the existence of a
unitary matrix V such that

Uk = Vk : k = 0, 1, 2, . . . , n2 − 1

Since our objective is to span Vn2 we require that those powers of V be distinct,
and to truncate the set of powers we impose the requirement that

Vk = Vk+n2

Thus are we led to contemplate constructions of the form

Uk = Vk mod n2
with Vp

{= I : p = 0
+= I : p = 1, 2, . . . , n2 − 1
= I : p = n2

But it is not immediately immediately evident how an n×n matrix V with those
properties is to be constructed, or even whether such a matrix can exist.15

This development motivates us to contemplate a fundamental revision of
our program. We take the elements of the unitary basis {U} to be doubly
indexed matrices of the form

Uij = V i W j : i, j ∈ {0, 1, 2, . . . , n − 1}

where the unitary “generators” V and W satisfy the cyclicity conditions

Vn = I and Wn = I

Normality (Uij , Uij) = 1 is again automatic, and if orthogonality

(Uij , Ukl) = δikδjl ≡ δij,kl

had been established it would again follow from U00 = I that all the other
Uij -matrices are traceless. But to achieve orthogonality we must work a bit.

15 Every n×n matrix V is known by the Cayley-Hamilton theorem to satisfy
a polynomial equation of degree n. How, therefore, can it come to satisfy a
polynomial condition Vn2

= I of degree n2 ? This is a question to which I will
return.
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We have

(Uij , Ukl) = 1
n tr(W−jV−iV jW l) = 1

n tr(W−jVk−iW l)

but to progress beyond this point we need to be in position to bring the Vk−i

factor to the left of the W−j factor. We would like, more specifically, to be
in position to write W−jVk−i = eiΩ VP WQ, where Ω, P and Q depend in
presently unspecified ways upon i, j and k. This objective would be served
most simply by positing a commutation rule of the form

WV = χ·VW =⇒ Wp Vq = χpq ·Vq Wp : χ ≡ eiϕ

which, we notice, would have the attractive consequence of establishing
multiplicative closure within the set of Uij -matrices:

UijUkl = V iW jVkW l = χ jk · V i+kW j+l = χ jk · Ui+k,j+l

It would then follow that

(Uij , Ukl) = χ−j(k−i) · 1
n trUk−i,l−j

Looking to the traces of the left and right sides of Wp Vq = χpq ·Vq Wp we
discover that

trUpq = 0 provided χpq #= 1, i.e., ϕ pq #= 0 mod 2π

while trivially
trU00 = n

Deeper analysis is required, however, (i ) to discover the trace implications of
the statements Vn = Wn = I and (ii ) to identify the conditions that must be
imposed upon V and W to achieve trVk = trWk = 0 (k = 1, 2, . . . , n − 1). We
have at our disposal the following

Little Theorem: Let X be an n × n matrix with n ≥ 2. The
characteristic polynomial of X has the form

p(x) = (−)n det(X − xI)
= xn − xn−1(trX) + · · · + (−)n det X

so trX = 0 if and only if the characteristic polynomial presents no
term of order xn−1.

but confront the fact that the Cayley-Hamilton theorem cannot be used “in
reverse”: if , for example, it were known that the characteristic polynomial of
X were p(x) = xn − 1 then we would assuredly have p(X) = Xn − I = O , but
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from Xn−I = O it does not follow that the characteristic polynomial of X reads
p(x) = xn − 1, as I demonstrate. Look, for example, to

X =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



 : satisfies X4 − I = O

of which the characteristic polynomial is

p(x) = x4 − 2x2 + 1

= (x2 − 1)2

= (x4 − 1) − 2(x2 − 1)

#= x4 − 1

The obvious tracelessness of X conforms to the fact that p(x) presents no term
of order x3. The matrix X does in fact satisfy p(X) = O, but it is seen to be
a root also of the reduced characteristic polynomial r(x) = x2 − 1, and it is by
implication of the latter circumstance that it comes also to satisfy X4 − I = O.
Turning our attention now to the powers of X, we find16

p(X2, x) = x4 − 4x3 + 6x2 − 4x + 1 = (x − 1)4

r(X2, x) = x − 1

p(X3, x) = x4 − 2x2 + 1 = (x2 − 1)2

r(X3, x) = x2 − 1

from which we conclude on the basis of the Little Theorem that trX2 = 4,
trX3 = 0. The reduced polynomials supply (X2)1 − I = O and (X3)2 − I = O
from which we extract X0 = X2 = X4 = I and X1 = X3 #= I, whence

trX0 = trX2 = trX4 = 4

trX1 = trX3 = 0

These results are further illuminated when one looks to the spectral properties
of X. Quite generally, if

X has eigenvalues {λ1, λ2, λ3, λ4}

then Xk has eigenvalues {λk
1 , λk

2 , λk
3 , λk

4} : k = 2, 3, . . .

and trXk = λk
1 + λk

2 + λk
3 + λk

4

16 I find it convenient in this expanded context to borrow a notational
convention from Mathematica.
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In the present instance

X has eigenvalues {+1, +1,−1,−1} =⇒ trX = 0

X2 has eigenvalues {+1, +1, +1, +1} =⇒ trX2 = 4

X3 has eigenvalues {+1, +1,−1,−1} =⇒ trX3 = 0

X4 has eigenvalues {+1, +1, +1, +1} =⇒ trX4 = 4

Our assignment now is to exhibit unitary n × n matrices V and W with
the properties sufficient to ensure the trace-wise orthonormality of the unitary
matrices Uij = V iW j . Schwinger and (in effect) Werner were content to pluck
such matrices from their respective hats. I will attempt to proceed by a series of
motivated steps along a path that is by now almost obvious. Taking clue from
the cyclic implications of the equations Vn = I , Wn = I and from the familiar
fact that cycles loom large in the theory of permutation groups, we look to. . .

Some properties of permutation matrices and their characteristic polynomials.

The matrix P that sends the top row (displayed as a column vector) of the
permutation symbol

P =
(

1 2 3 · · · n
i1 i2 i3 · · · in

)

to the second row (similarly displayed) is a“permutation matrix.” Such matrices
show a solitary 1 in every row/column, with all other elements 0. For example,
as an expression of

(
1 2 3 4 5 6 7 8
2 4 6 1 5 8 3 7

)

we have





2
4
6
1
5
8
3
7





= P





1
2
3
4
5
6
7
8





with P =





0 • 0 0 0 0 0 0
0 0 0 • 0 0 0 0
0 0 0 0 0 • 0 0
• 0 0 0 0 0 0 0
0 0 0 0 • 0 0 0
0 0 0 0 0 0 0 •
0 0 • 0 0 0 0 0
0 0 0 0 0 0 • 0





where for visual emphasis I have adopted the convention • = 1.

It is clear by inspection that invariably P –1 = P T, which is to say: every
permutation matrix is a rotation matrix (a real unitary matrix), proper or
improper according as the permutation to which it refers is even or odd.
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Every permutation can be resolved into disjoint “cycles.” In our example,
we have17

1 → 2 → 4 → 1 : 3 → 6 → 8 → 7 → 3 : 5 → 5

To emphasize its cycle structure we adjust the order of the terms in the original
permutation symbol, writing

(
1 2 4 | 3 6 8 7 | 5

2 4 1
∣∣ 6 8 7 3

∣∣ 5

)

which after some simple relabeling (which itself is a kind of permutation)
becomes (

1 2 3 | 4 5 6 7 | 8

2 3 1
∣∣ 5 6 7 4

∣∣ 8

)

and causes the associated permutation matrix to asssume the structure





0 • 0 0 0 0 0 0
0 0 • 0 0 0 0 0
• 0 0 0 0 0 0 0
0 0 0 0 • 0 0 0
0 0 0 0 0 • 0 0
0 0 0 0 0 0 • 0
0 0 0 • 0 0 0 0
0 0 0 0 0 0 0 •





= B{C3, C4, C1}

where

B{C3, C4, C1} denotes the block diagonal matrix




C3 0 0
0 C4 0
0 0 C1





and in this instance

C3 =




0 • 0
0 0 •
• 0 0



 , C4 =





0 • 0 0
0 0 • 0
0 0 0 •
• 0 0 0



 , C1 = ( • )

C3 refers to a permutation 1 → 2 → 3 → 1 that repeats with period 3 = dimC3,
from which it follows that

C 3
3 = I3 ; similarly C 4

4 = I4 and C 1
1 = I1

17 To the command ToCycles[{2, 4, 6, 1, 5, 8, 3, 7}] Mathematica responds

{{2, 4, 1}, {6, 8, 7, 3}, {5}}
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where Id refers to the d -dimensional identity matrix. We agree henceforth
to reserve the term “cycle” (or “cyclic”) for permutations C that cannot be
resolved into subcycles, and the notation C for the matrix representations of
such permutations—matrices which can by simple relabeling be brought to the
“canonical form”

Cn =





0 • 0 0 · · · 0 0
0 0 • 0 · · · 0 0
0 0 0 • · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · • 0
0 0 0 0 · · · 0 •
• 0 0 0 · · · 0 0





The p th power (p = 2, 3, . . . , n− 1) of Cn is cyclic iff {p, n} are relatively prime
(i.e., GCD[p, n] = 1), which will invariably be the case if n is prime. But
more generally—typically but not invariably—powers of cyclic matrices are not
cyclic:

Cn
p ↪→ B{g copies of Cn/g} : g = GCD[p, n]

where ↪→ signifies “can by a relabeling be rendered.” Thus18

C6
2 =





0 0 • 0 0 0
0 0 0 • 0 0
0 0 0 0 • 0
0 0 0 0 0 •
• 0 0 0 0 0
0 • 0 0 0 0




↪→ B{C3, C3}

C6
3 ↪→ B{C2, C2, C2}

C6
4 ↪→ B{C3, C3}

C6
5 ↪→ B{C6}

C6
6 ↪→ B{C1, C1, C1, C1, C1, C1} = I6

If a general/unspecialized permutation matrix is rendered

P ↪→ B{Ca, Cb, . . . , Cz} : a + b + · · · + z = n

then
Pp ↪→ B{Ca

p, Cb
p, . . . , Cz

p}

where the matrices on the diagonal are subject to the resolution principle just
described.

18 To conduct experiments in this connection, command

RotateLeft[{1, 2, 3, . . . , n}, p]
ToCycles[%]
GCD[p, n ]



26 Some uncommon matrix theory

All permutation matrices—whether cyclic or not—are periodic. The period
of B{Ca, Cb, . . . , Cz} is

π
(
B{Ca, Cb, . . . , Cz}

)
= LCM(a, b, . . . , z)

Thus (returning to the example introduced on page 24) the 8 × 8 permutation
matrix P = B{C3, C4, C1} has period LCM(3, 4, 1) = 12 > 8.

All of which constitutes simply a permutationally particularized instance
of the more general ideas/results sketched at the end of the preceding section.
But the particularization permits a sharpeining of some of those results. To
wit:

The (monic) characteristic polynomial of every C-matrix is irreducible, and
possesses the cyclotomic structure

r(Cn, x) = p(Cn, x) = xn − 1

from which it follows by our Little Theorem that—which is clear already by
inspection—every such matrix is traceless:

trCn = 0 : n = 2, 3, . . .

Immediately

trB{Ca, Cb, . . . , Cz} = number of unit subscripts

and
tr(Cn

p) = trB{g copies of Cn/g} =
{

0 : n/g #= 1
n : n/g = 1

which is to say

=
{

0 : p mod n #= 0
n : p mod n = 0

There are, in this connection, lessons yet to be learned from the example cited
for a third time at the top of this page:

P =





0 • 0 0 0 0 0 0
0 0 0 • 0 0 0 0
0 0 0 0 0 • 0 0
• 0 0 0 0 0 0 0
0 0 0 0 • 0 0 0
0 0 0 0 0 0 0 •
0 0 • 0 0 0 0 0
0 0 0 0 0 0 • 0





↪→ B{C3, C4, C1}

We have
r(P, x) = p(P, x) = (x3 − 1)(x4 − 1)(x − 1)

= x8 − x7 − x5 + x3 + x − 1

so by the Cayley-Hamilton theorem expect to have (and verify by computation
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that we do in fact have)

P8 − P7 − P5 + P3 + P1 − P0 = O (ii)

On the other hand, we have argued that π(P) = 12 and verify by computation
that indeed

P12 − I = O (iii)

I discuss now how it comes about that

(ii) =⇒ (iii), but not conversely

The roots of the cyclotomic polynomial xn − 1 are nth roots of unity:

xn − 1 =
n−1∏

k=0

(x − ωk) : ω = ei2π/n

Noting once again that LCM(3, 4, 1) = 12, we observe that the factored form
of (i) presents some but not all of the 12th roots of unity:

(x3 − 1)(x4 − 1)(x − 1)

= [(x − Ω0)(x − Ω4)(x − Ω8)]

· [(x − Ω0)(x − Ω3)(x − Ω6)(x − Ω9)] · [(x − Ω0)] : Ω = ei2π/12

The missing roots are {Ω1, Ω2, Ω5, Ω7, Ω10, Ω11}. Clearly

(x3 − 1)(x4 − 1)(x − 1) = 0
⇓

(x − Ω1)(x − Ω2)(x − Ω5)(x − Ω7)(x − Ω10)(x − Ω11)

··· (x3 − 1)(x4 − 1)(x − 1) = (x12 − 1)
= 0

It is for this reason that

(P3 − I)(P4 − I)(P − I) = O =⇒ P12 − I = O

A more heroic illustration of the same point follows from a fact that of all
the 490 partitions of 19 the one with greatest LCM is19

19 = 3 + 4 + 5 + 7 : LCM(3, 4, 5, 7) = 420

So if we construct the 19 × 19 block matrix (composite permutation matrix)

P19 = B(C3, C4, C5, C7)

we expect to have (and verify by calculation that we do in fact have)

p(P19, x) = (x3 − 1)(x4 − 1)(x5 − 1)(x7 − 1)
⇓

(P 3
19 − I)(P 4

19 − I)(P 5
19 − I)(P 7

19 − I) = O
⇓

(P 420
19 − I) = O =⇒ π(P19) = 420

19 I borrow this information from “The maximal LCM problem” (April 2012).
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Looking now to the traces of cyclic matrices, and of permutation matrices
assembled from them, and of the powers of such matrices. . .we have

trCn =
n−1∑

k=0

(ωn)k = 0 : ωn = ei2π/n

This elementary property of the roots of unity—made no less striking by its
familiarity—becomes obvious when (as is standard practice in textbooks) the
roots are displayed as symmetrically arranged points (unit vectors) on the
complex plane, but can be attributed also—by appeal to our Little Theorem
—to the fact that p(Cn, x) = xn − 1 (n > 1) presents no term of order xn−1.
Those same arguments supply

trCp
n =

{
n : p = 0
0 : p = 1, 2, . . . , n − 1

= nδn,pmodn

Looking more generally to

P = B{Ca, Cb, . . . , Cz}

we have

trPp = trCp
a + trCp

b + · · · + trCp
z

= aδa,pmoda + bδb,pmodb + · · · + z δz,pmodz

=
∑

dimensions of C-factors with completed periods

In the following table I show how this works in the case P = B{C2, C3, C4},
which is 9 × 9 and has period LCM(2, 3, 4) = 12:

p trCp
2 trCp

3 trCp
4 trPp

1 0 0 0 0
2 2 0 0 2
3 0 3 0 3
4 2 0 4 6
5 0 0 0 0
6 2 3 0 5
7 0 0 0 0
8 2 0 4 6
9 0 3 0 3
10 2 0 0 2
11 0 0 0 0
12 2 3 4 9
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We saw a simpler example of the same phenomenon already on page 22. It is a
phenomenon of musical simplicity, familiar in every clockshop, or to everyone (of
whom there cannot be many!) who has attended a performance of Steve Reich’s
“Clapping Music”20 (1972): each C -matrix is in effect a “drummer” (“clock,’
“clapper”), who drums (ticks, claps) with his own characteristic frequency.
From time to time the drum beats of this or that pair of drummers coincide,
and less frequently (but periodically) they all coincide.

To expose the interrelationships among drummers—stripped of everything
having to do explicitly with “permutations”—we deploy the eigenvalues of Cn

on the principal diagonal of an n × n diagonal matrix Dn:

Cn ≡





0 • 0 0 · · · 0
0 0 • 0 · · · 0
0 0 0 • · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · •
• 0 0 0 · · · 0





)

Dn ≡





ω0 0 0 · · · 0
0 ω1 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωn−1




: ω = ei2π/n

The matrices Cn and Dn have—by design—identical spectra, therefore have
identical characteristic polynomials, identical algebraic properties, identical
traces. The same can be said of the matrices P and Q that result from the
association

P = B(C1, C2, . . . , Cν)
)

Q = B(D1, D2, . . . , Dν)

We observe that the matrices Dn—whence also matrices of type Q —are
manifestly unitary.

Multiplication—whether from right or left—of a C -matrix by any diagonal
matrix serves simply to “decorate the ones” and to leave all zeros in place, so the
trace properties of CnDm and DmCn are identical to those of Cn. Comparing





0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









ω0 0 0 0
0 ω1 0 0
0 0 ω2 0
0 0 0 ω3



 =





0 ω1 0 0
0 0 ω2 0
0 0 0 ω3

ω0 0 0 0





20 See (!) the video at http://www.youtube.com/watch?v=dXhBti6256–s.
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with

ω





ω0 0 0 0
0 ω1 0 0
0 0 ω2 0
0 0 0 ω3









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



 = ω





0 ω0 0 0
0 0 ω1 0
0 0 0 ω2

ω3 0 0 0





we infer that
CnDn = ω · DnCn : all n > 1

from which it follows that

Ca
n Db

n = ω ab mod n · Db
n Ca

n

where ω = ei2π/n and where the matrix products on both left and right are
clearly unitary.

Schwinger’s construction. Our attempt to solve the “orthonormal unitary basis
problem” had, by page 21, brought us to constructions of the form Uij = V iW j

where unitary generators V and W were required to satisfy the cyclicity
conditions Vn = Wn = I, to have traceless non-trivial powers, and to satisfy
a commutation relation of the form W V = eiϕ·V W. Drawing motivation from
he first of those conditions, we reviewed aspects of the theory of permutation
matrices and were led (in the n-dimensional case) to matrices Cn and Dn that
satisfy all of the required conditions. . . and thus to Schwinger’s construction

Uij = C iD j

of manifestly unitary matrices that satisfy

(Uij , Ukl) ≡ 1
n tr(Uij

+ Ukl) = δikδjl

In the case n = 3 those matrices read


1 0 0
0 1 0
0 0 1



 ,




1 0 0
0 ω 0
0 0 ω2



 ,




1 0 0
0 ω2 0
0 0 ω








0 1 0
0 0 1
1 0 0



 ,




0 ω 0
0 0 ω2

1 0 0



 ,




0 ω2 0
0 0 ω
1 0 0








0 0 1
1 0 0
0 1 0



 ,




0 0 ω2

1 0 0
0 ω 0



 ,




0 0 ω
1 0 0
0 ω2 0





with ω = ei2π/3.

The matrices Uij provide a (unitary) basis in the space of n × n matrices,
which is to say: every such matrix A can be developed

A =
n−1∑

i,j=0

a ijUij with apq = (Uij , A)

which entails A+ =
n−1∑

i,j=0

ā ijUij
+

where Uij
+ = D−jC−i = ω−ij modn · C−iD−j = ω−ij modn Un−i,n−j . So we have
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A+ =
n−1∑

i,j=0

ā ij ω−ij modn Un−i,n−j

=
n−1∑

p,q=0

ān−p,n−q ω−(n−p)(n−q)modn Upq

≡
n−1∑

p,q=0

Apq Upq

Hermiticity therefore imposes upon the U-coordinates of A the conditions

apq = ān−p,n−q ω−(n−p)(n−q)modn

where interpretation of the expression on the right is subject to the
understanding that the subscripts on ān−p,n−q are to be read mod n. It is
striking that the hermiticity condition—so easy to describe in terms of
coordinates that refer to a hermitian basis—becomes so awkward when the
coordinates refer to a Schwinger unitary basis. The awkwardness derives largely
from the intrusion of modular arithmetic, which Mathematica takes in easy
stride; I have shown by that means that the result stated above works out
correctly in a randomly-constructed 3-dimensional case.

The conditions imposed upon the U-coordinates of A by the requirement
that A be unitary

AA+ = U00

are even more intricate, but merit study not least because they possess at least
one simply-stated but very pretty property. It proves advantageous to split the
problem into two parts: we look first to the coordinates of the matrix B that
satisfies

BA+ = U00

(i.e., of the inverse of A+) and then to implications of the condition B = A.

We have

BA+ =
n−1∑

i,j,p,q=0

bijApqUijUpq

which by Uij Upq = C i D j Cp Dq = ω−jpmodn · C i+p D j+q = ω−jpmodn Ui+p,j+q

(here again, i + p and j + q are to be evaluated mod n) becomes

=
n−1∑

i,j,p,q=0

bijApqω
−jpmodn U(i+p)modn, (j+q)modn (iv)

We would like to be in position to write

=
n−1∑

r,s=0

Zrs(ā, b)Urs : Zrs(ā, b) bilinear
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and then to discover the b -coordinates that satisfy

Zrs(ā, b) =
{ 1 : r, s = 0, 0

0 : otherwise
but are frustrated by the modular arithmetic. To illustrate how that program
works out I look to the 2-dimensional case, where things can be written out in
detail, the modular arithmetic takes care of itself, and only incidental machine
assistance is required.

In the 2-dimensional case one has

C =
(

0 1
1 0

)
, ω = ei2π/2 = −1, D =

(
1 0
0 −1

)

giving20

U00 =
(

1 0
0 1

)
, U01 =

(
1 0
0 −1

)

U10 =
(

0 1
1 0

)
, U11 =

(
0 −1
1 0

)

so

A =
1∑

p,q=0

apq Upq =
(

a00 + a10 a10 − a11

a10 + a11 a00 − a10

)

B =
1∑

p,q=0

bpq Upq =
(

b00 + b10 b10 − b11

b10 + b11 b00 − b10

)

A+ =
1∑

p,q=0

āpq Upq
+ =

(
ā00 + ā10 ā10 + ā11

ā10 − ā11 ā00 − ā10

)

which supply

BA+ =
(

ba00 ba01

ba10 ba11

)

with
ba00 = (b00 + b10)(ā00 + ā10) + (b10 − b11)(ā10 − ā11)
ba01 = (b00 + b10)(ā10 + ā11) + (b10 − b11)(ā00 − ā10)
ba10 = (b10 + b11)(ā00 + ā10) + (b00 − b10)(ā10 − ā11)
ba11 = (b10 + b11)(ā10 + ā11) + (b00 − b10)(ā00 − ā10)

The U-expansion of BA+ reads

BA+ =
1∑

r,s=0

Zrs Urs

Zrs = 1
2 tr

(
Urs

+ BA+)

20 This is the only case in which all elements of all Schwinger matrices are real.
Werner’s construction will—granted the validity of Hadamard’s conjecture—
present additional cases when n is a multiple of 4.
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where Mathematica supplies

Z00 = b00ā00 + b01ā01 + b10ā10 + b11ā11

Z01 = b00ā01 + b01ā00 − b10ā11 − b11ā10

Z10 = b00ā10 + b01ā11 + b10ā00 + b11ā01

Z11 = −b00ā11 − b01ā10 + b01ā01 + b11ā00

which can be written

Z





b00

b01

b10

b11



 =





Z00

Z01

Z10

Z11



 with Z =





ā00 ā01 ā10 ā11

ā01 ā00 −ā11 −ā10

ā10 ā11 ā00 ā01

−ā11 −ā10 ā01 ā00





Calculation supplies

det Z = (det Ā)2 with det A = a2
00 − a2

01 − a2
10 + a2

11

so when A is non-singular it makes sense to write




b00

b01

b10

b11



 = Z –1





Z00

Z01

Z10

Z11





and in such non-singular cases we are led to the U-coordinates of B, the inverse
of A+:





Z00

Z01

Z10

Z11



 =





1
0
0
0



 =⇒





b00

b01

b10

b11



 = (ā2
00 − ā2

10 − ā2
01 + ā2

11)
–1





ā00

−ā01

−ā10

ā11





The 2-dimensional unitarity condition therefore reads




a00

a01

a10

a11



 = (ā2
00 − ā2

10 − ā2
01 + ā2

11)
–1





ā00

−ā01

−ā10

ā11





I do not possess a parameterized description of all possible solutions of the
preceding condition, but note this very pretty immediate corollary:

If the complex numbers aij are Schwinger coordinates
of a 2-dimensional unitary matrix, then

1∑

i,j=0

āijaij = 1

Note, however, that the converse is not valid.
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The equations developed in the preceding paragraph comprise an
elaborately disguised variant of some quaternionic algebra that was familiar
already to Hamilton. Similar discussion in higher-dimensional cases—if written
onto the page, rather than into the memory of a computer—is scarcely feasible
(and certainly not informative), since all expressions expand by a factor of
4 → n2. I have, however, managed—with Mathematica’s assistance—to
establish similar results in randomly constructed cases of of dimension n = 3.
I am confident that it must be possible to extract such results in full generality
from (iv), but have at present no clue as to how that might be accomplished.

Werner’s construction. Schwinger’s construction21 builds upon ideas that had
been developed by Hermann Weyl22 nearly thirty years previously—a debt
which Schwinger acknowledges. Reinhardt Werner, on the other hand, proceeds
along a seemingly quite different fresh path to a similar objective. Werner’s
construction23 makes essential use of two novel devices: Latin squares and
Hadamard matrices.

latin, graeco-latin & magic squares

Latin squares are square arrangements of symbols (call them 1, 2, . . . , n
in which each symbol appears exactly once in each row and column:

(
1 2
2 1

)
,




1 2 3
2 3 1
3 1 2



,





1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1



,





1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1





Some Latin squares (such as those shown above) can be read as group tables, but
others cannot; the following is the smallest example of a Latin square that can
be interpreted to refer not to a group but to a “quasi-group” (non-associative
group, or “loop”): 



1 2 3 4 5
2 4 1 5 3
3 5 4 2 1
4 1 5 3 2
5 3 2 1 4





But the latter serves Werner’s purpose just as well as the others. The literature
describes criteria with respect to which Latin squares of the same dimension
become “equivalent/inequivalent.” The number of inequivalent Latin squares is

21 “Unitary operator bases,” PNAS 45, 570 (1960).
22 The Theory of Groups & Quantum Mechanics (1930), Chapter 4, §14

(“Quantum kinematics as an Abelian group of rotations”).
23 “All teleportation and dense coding schemes,” arXiv:quant-ph/003070v1,

17 Mar 2000. See especially §4 “Construcing bases of unitaries.” Some of that
work was anticipated in K. G. H. Vollbrecht & R. F. Werner, “Why two qubits
are special,” arXiv:quanat-ph/9910064v1 (14 Oct 1999).
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a very rapidly increasing function of dimension: at n = 23 it has become 283657,
and by n = 10 it has reportedly grown to 34817397894749939 ≈ 3.48 × 1016,
which affords Werner plenty of selection options!

We note in passing that24 that Z (neglect the signs) is a 4th-order Latin
square, of the same design as the first of those shown on the preceding page.

Graeco-Latin squares—sometimes called “Euler squares”—are Latin with
respect to each of two distinct symbol-sets, assembled subject to the constraint
that every symbol pair appears once and only once (i.e., that the respective
Latin squares are “orthogonal”):




Aa Bc Cb
Bb Ca Ac
Cc Ab Ba









Aa Bd Cb De Ec
Bb Ce Dc Ea Ad
Cc Da Ed Ab Be
Dd Eb Ae Bc Ca
Ee Ac Ba Cd Db





Noting that Graeco-Latin squares of order 2 are clearly impossible, and finding
himself unable to consruct one of order 6, Euler (1782) conjectured that such
squares are impossible if n = 2 mod 4 (i.e., if n = 2, 6, 10, 14, 18, 22, . . .).
Euler’s conjecture was refuted when, in 1959, counterexamples of order 22 were
constructed. Shortly thereafter, UNIVAC produced a square of order 10, and
it was established that Euler squares exist for all n > 2 except n = 6. Little
is known about the number of permutationally distinct Euler squares of order
n > 6 beyond the fact that it is typically much smaller than the number of
Latin squares of the same order. Graeco-Latin squares play a prominent role
in theory and practice having to do with the design of experiments (as do
“hyper-Graeco-Latin squares,” in which more than two distinct symbol-sets
are employed), and enter also into some of the many methods for constructing
magic squares.

Magic squares are square matrices in which the elements are (typically but
not invariably) real numbers, arranged in such a way that all rows, columns
and principal diagonals sum to the same number (the “magic constant”). In
“normal” magic squares the elements are drawn from the list {1, 2, . . . , n2} and
the magic constant is 1

2n(n2 + 1). Here is the magic square that appears in
Albrecht Dürer’s Melencolia (1514: see the center of the bottom row)





16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1





which possesses some unexpected magical features: adding the four elements
in the central square—or the four elements at the corners—also produces the
magic constant 34. Magic squares have fascinated people of many cultures since

24 See again page 33.
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deep antiquity,25 and exist in a great variety of variant forms. Here is a
non-normal magic square in which all the elements are prime: 26




17 89 71
113 59 5
47 29 101





To illustrate the simple method by which ordinary “additive magic squares”
can be converted into “multiplicative magic squares” I introduce the “Lo Shu
square” (purportedly discovered on the back of a turtle in 650 BC, and of
mystical importance in Chinese history)




4 9 2
3 5 7
8 1 6





and use its elements as exponents to construct

M(x) =




x4 x9 x2

x3 x5 x7

x8 x1 x6



 =⇒ M(2) =




16 512 4
8 32 128

256 2 64





Clearly it is now the products of all rows/columns/diagonals that are equal
(equal in fact to 215 = 32768). Notice, however, that while (for example)




12 9 12
36 6 1
3 4 18





is multiplicative it clearly did not arise from a construction of the type just
described.

hadamard matrices, real & complex

The theory of Hadamard matrices originates in a paper27 by J. J. Sylvester,
and acquired its name from a paper published twenty-six years later by Jacques

25 Benjamin Franklin (see Google) was a prolific inventor of magic squares, an
activity with which he says (1771) he busied himself while serving as secretary to
meetings at which he could perforce not speak. Actually, some of his ingenious
designs date from his youth, though he could, when called upon, reproduce
them at advanced age; it appears to have been a life-long addiction.

26 It is known that such squares exist of all orders. The magic constant in
this instance is 177.

27 “Thoughts on inverse orthogonal matrices, simultaneous sign successions,
and tessellated pavements in two or more colors, with applications to Newton’s
rule, ornamental tile-work, and the theory of numbers,” Phil. Mag. 34, 461–475,
(1867).
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Hadamard. Hadamard matrices are square matrices with all elements equal to
±1 and with the further property that all rows/columns are orthogonal, which
forces the dimenson of such matrices to be even, and entails

H H T = nI

In the simplest instance one has

H2 =
(

1 1
1 −1

)

Sylvester himself contemplated matrices of progressively higher order

H4 = H2 ⊗ H2 =





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



, H8 = H2 ⊗ H4 , etc.

Such matrices have dimension {2, 4, 8, 16, 32, 64, . . . , 2n}. The still -unproven
Hadamard conjecture asserts that real Hadamard matrices exist in all
dimensions that are multiples of 4, which would fill in these gaps in Sylvester’s
list: {12, ", 20, 24, 28, ", 36, 40, 44, 48, 52, 56, 60, ", . . .}. As of 2008, the least
value of n for which Hadamard’s conjecture has not been confirmed is
n = 688 = 4× 172, and there were a total of thirteen such cases with n < 2000.
The real Hadamard matrices are (given the natural interpretation of
“equivalence” supplied by the literature) unique through n = 2, 4, 6, 12, but
5 inequivalent Hadamard matrices exist for n = 16, and millions are known for
n ≥ 32. This again provides Werner with plenty of room to wiggle, at least in
dimensions that are multiples of four.28

Complex Hadamard matrices—which satisfy the complexified condition

H H+ = n I

28 A word about how Hadamard’s motivation, which differed markedly from
Sylvester’s: Let {x0, y0, z0}, {x1, y1, z1}, {x2, y2, z2}, {x3, y3, z3} be Cartesian
coordinates of the vertices of a 3-simplex (tetrahedron) contained within a unit
cube (all coordinates bounded by ±1). One has

Volume = 1
3! det





1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3





which according to Hadamard’s determinant theorem assumes its maximal value
when the matrix is equivalent to H4 .
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—exist in all dimensions, including those that are not multiples of four. The
most important class of such matrices are those of “Butson type,”29 which in
n-dimensions possess the “Fourier structure”

Fn = ‖Fn,jk‖ with Fn,jk = ω jkmodn

where ω = ei2π/n and j, k ∈ {0, 1, 2, . . . , n−1}. Low-dimensional examples look
like this:

F2 =
(

1 1
1 ω

)
with ω = ei2π/2 = −1

F3 =




1 1 1
1 ω ω2

1 ω2 ω4



 with ω = ei2π/3

=




1 1 1
1 ω ω2

1 ω2 ω





F4 =





1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9



 with ω = ei2π/4 = i

=





1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω





Notice that in each case the elements of every row/column (except the 0th)
sum to zero; the F-matrices can in that sense be said (not very usefully) to be
“semi-magical.”30 From H H+ = n I we see that

Un = 1√
n

Hn

is unitary. Familiarly, such matrices are central to the theory of discrete Fourier
transforms.31 Notice finally that the complex numbers that appear on the kth

29 See http://en.wikipedia.org/wiki/Butson-type–Hadamard–matrices. The
original reference is A. T. Butson, “Generalized Hadamard matrices,” Proc.
Amer. Math. Soc. 13, 894-898 (1962).

30 Properly complex magic squares present no mystery; look, for instance, to
these Lo Shu examples (which might have appeared on the back of a complex
turtle): 


4 + α 9 + α 2 + α
3 + α 5 + α 7 + α
8 + α 1 + α 6 + α



 + iβ




2 7 6
9 5 1
4 3 8





where α and β are any real or complex numbers. The magic constant in this
instance is 15 + (3α + i15β).

31 See, for example, http://en.wikipedia.org/wiki/Discrete–Fourier–transform.
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row/column of Fn are precisely the numbers that appear on the diagonal of

Dn
k =





1 0 0 0 . . . 0
0 ω 0 0 . . . 0
0 0 ω2 0 . . . 0
0 0 0 ω3 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . ωn−1





k

To create the n × n elements of a unitary basis, Werner would have us
select any nth-order Hadamard matrix H and any nth-order Latin square L,
and from that material assemble

Wij = ‖Wij,pq‖
Wij,pq = Hip · KroneckerDelta[q, Ljp]

Evidently, H supplies the numerical data that will be displayed as elements of
the matrices Wij while L controls the deployment of that data. To illustrate
how this works we look to the case n = 3, in which, as it happens, we are
essentially forced to select32

H =




H00 H01 H02

H10 H11 H12

H20 H21 H22



 =




1 1 1
1 ω ω2

1 ω2 ω4





L =




L00 L01 L02

L10 L11 L12

L20 L21 L22



 =




0 1 2
1 2 0
2 0 1





Thus

W00 = ‖H0p∆(q, L0p)‖ =




H00∆(0, L00) H00∆(1, L00) H00∆(2, L00)
H01∆(0, L01) H01∆(1, L01) H01∆(2, L01)
H02∆(0, L02) H02∆(1, L02) H02∆(2, L02)





=




H00δ00 H00δ10 H00δ20

H01δ01 H01δ11 H01δ21

H02δ02 H02δ12 H02δ22





=




H00 0 0
0 H01 0
0 0 H02



 =




1 0 0
0 1 0
0 0 1





32 Here again ω = ei2π/3, and in the description of L we have adopted a
symbol-set that conforms to our convention that indices range on {0, 1, 2}.
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W01 = ‖H0p∆(q, L1p)‖ =




H00∆(0, L10) H00∆(1, L10) H00∆(2, L10)
H01∆(0, L11) H01∆(1, L11) H01∆(2, L11)
H02∆(0, L12) H02∆(1, L12) H02∆(2, L12)





=




H00δ01 H00δ11 H00δ21

H01δ02 H01δ12 H01δ22

H02δ00 H02δ10 H02δ20





=




0 H00 0
0 0 H01

H02 0 0



 =




0 1 0
0 0 1
1 0 0





The preceding statements illustrate how it comes about that the 0th row of L
controls the design of {Wi0 : i = 0, 1, . . .}, the 1th row controls the design of
{Wi1 : i = 0, 1, . . .}, etc. Since W01 and W11 (see below) are under identical
control we are not surprised to find that they display the same essential structure
(same deployment of 0s):

W11 = ‖H1p∆(q, L1p)‖ =




H10∆(0, L10) H10∆(1, L10) H10∆(2, L10)
H11∆(0, L11) H11∆(1, L11) H11∆(2, L11)
H12∆(0, L12) H12∆(1, L12) H12∆(2, L12)





=




H10δ01 H10δ11 H10δ21

H11δ02 H11δ12 H11δ22

H12δ00 H12δ10 H12δ20





=




0 H10 0
0 0 H11

H12 0 0



 =




0 1 0
0 0 ω
ω2 0 0





From



0 1 0
0 0 ω
ω2 0 0



 =




1 0 0
0 ω 0
0 0 ω2








0 1 0
0 0 1
1 0 0



 = ω2




0 1 0
0 0 1
1 0 0








1 0 0
0 ω 0
0 0 ω2





⇓
W11 = ω2 · U11 , etc.

it becomes clear (i ) why Werner speaks of “shift-and-multiply bases” and
(ii ) that Werner’s unitary bases differ only cosmetically from Schwinger’s. We
can therefore consider unitarity, tracelessness (except in the case i = j = 0)
and trace-wise orthonormality to have been already established. Werner’s
construction—precisely because it makes such clever use of Latin squares and
Hadamard matrices—is so convoluted as to make the direct demonstration of
such properties (ditto the formulation of hermiticity, inversion and unitarity
conditions) relatively awkward; in those respects Schwinger’s construction
presents distinct advantages. On the other hand, the fact that (when n is
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not too small) Latin squares and Hadamard matrices come in so many flavors
lends a remarkable—and potentially useful—range and degree of flexibility to
the Werner formalism. Note particularly that, when n is either 2 or a multiple
of 4, Werner’s construction can be used to create unitary bases all elements of
which are real (i.e., rotational).


